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Recent advances in information technology are mak-
ing electric household appliances computerized and
networked. If our environments could intuit our ac-
tivities, e.g., by sensors, novel services taking antici-
pated actions into account would become possible. We
propose activity recognition that infers a subject’s next
action based on previously observed behaviors. We de-
veloped a cooking-support robot that suggests by voice
and gesture what the subject may want to do next. Ex-
perimental results confirmed feasibility of the infer-
ence and the quality of support.

Keywords: intelligent environment, data mining, mobile
robot, human-robot interaction

1. Introduction

Recent advances in information technology are com-
puterizing and networking mundane objects such as elec-
tric household appliances. The introduction of “intuitive”
environments, anticipating our activities, e.g., by sen-
sors, could enable novel services, anticipating and sup-
porting activities, unobtrusively. In this direction, Weiser
proposedubiquitous computing [18], which has since
emerged as the Aware Home [5], Intelligent Space [9],
Robotic Rooms I and II [12, 17], Easy Living [3,8], Smart
Rooms [15,16], etc.

A key factor in such systems is the use of ubiqui-
tous sensors to recognize human behavior. Intelligent
Space detects the location of a subject using multiple ceil-
ing cameras and having a mobile robot follow the sub-
ject [9]. Easy Living detects a subject’s location and turns
on nearby lights [3, 8]. These systems provide services
by anticipating human intention in movement. Robotic
Room I anticipates human intention more explicitly, e.g.,
in visual recognition of a finger pointed by a bedridden
subject Robotic Room I extends a robotic manipulator to
hand the object pointed at to the subject [17].

To recognize implicit intentions, Asaki et al. have pro-
posed recognizing human behavior, e.g., changing clothes

and preparing meals, using a state transition model [1].
Moore et al. have proposed Bayesian classification en-
abling the recognition of behavior via learning [10,11].
We have proposed intention recognition using an ID4-
based learning algorithm and succeeded in the recognition
of the intent to study, eat, rest, etc. [13].

While such research enables the recognition of certain
human activities, support remains rather limited. Assume,
for example, that a subject is making a cup of instant cof-
fee, the ubiquitous system could helpfully suggest where
the cream is, but to do so, it would have to know the time
series of procedures and infer the subject’s next action
based on previously observed behavior.

We propose activity recognition that infers subsequent
action taking past actions into account. With one-
dimensional barcodes on merchandise in such environ-
ments as supermarkets expected to eventually be replaced
by IC tags providing the manufacturer’s name, the type
of merchandise, the place of production, the expiration
date, etc., it is only a short step to anticipate that all ob-
jects in the home will carry such labels. We assume have
that food have cooking utensils, tableware, and cutlery in
a kitchen have IC tags and their movements is observable
by antennas on shelves and kitchen counters.

We developed kitchen support using mobile robot using
voice and gestures to suggest the next action a subject may
want take. Our experiments confirmed the feasibility and
quality of support.

2. System Design

2.1. Inference from Series of Actions

We start by discussing the types of behavior we must
recognize, defining an observed action by sensors asac-
tion ai and a set of actions asA� �a1�a2� � � � �an�, e.g., an
action sequence for coffee making consisting ofa1: “take
a cup from the cupboard,”a2: “take instant coffee from
the cupboard,”a3: “take a spoon from the drawer,” and
a4: “take a thermos jug of hot water.”

We define a set of time series actions of arbitrary
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length asaction pattern pi and a set of action patterns
as P � �p1� p2� � � � � pm�. We observed action pattern
po � �a3�a2�a4� in a subject and recorded action pattern
pi � �� � � �a3�a2�a4�a6� � � �� in databaseP, a collection of
action patterns observed thus far.

We find the same time series action pattern inpi and
infer that the next action to be executed is actiona6.

Subjects may behave redundantly or concurrently, e.g.,
po may includean as�a3�a2�an�a4� or pi may includean

as�� � � �a3�an�a2�a4�a6� � � ��. These actions are considered
noise when original time series actions consist of making
coffee, cooking hamburgers, etc., so we need a type of
inference that is robust against such noise.

Added to is, time series actions may branch, e.g., a sub-
ject making coffee may add sugar and an other subject
may add cream after making black coffee. This means
that p j � �� � � �a3�a2�a4�a7� � � �� may exist in addition to
pi above. If inference uses both time serial information
and the frequency of action patterns, it can predict a more
appropriate next action e.g., when a subject who always
drink black coffee adds cream, this is recognized immedi-
ately as a behavioral change.

2.2. Time-Sequence Data Mining

Data mining is categorized roughly into four types cor-
relation analysis, time-sequence analysis, clustering, and
learning [6]. Time-sequence analysis best suits our pur-
pose. In this section, we briefly explain typical algorithms
that extract temporal sequences in time-series patterns.

The a priori algorithm proposed by Agrawal is
used in data for temporal sequential data [2], as we
show through examples. Assume four time-series
data setsp1 � �a3�a2�a4�a6�� p2 � �a3�a2�a4�a6�� p3 �
�a3�a2�a5�a6�� p4 � �a3�a1�a4�a6� in a database. The a
priori algorithm extracts partial sequences from data sets
by taking into account the number of occurrences and cer-
tainty given by a user. It finds, for example, partial se-
quences�a3�a4�, which means “a4 occurs aftera3.” Cer-
tainty is the occurrence ratio, i.e.a4 happens aftera3 75%
of the time. Experiments show that the computational
cost increases exponentially as the number of data sets
increases with the a priori algorithm.

Pei proposed the PrefixSpan algorithm, which ex-
tracts multiple-frequency patterns efficiently which
minimizing computational cost [14]. Assume
four time-series data setsp1 � �a3�a2�a4�a6�� p2 �
�a3�a2�a4�a6�� p3 � �a3�a2�a5�a6�� p4 � �a3�a1�a4�a6�
as in the above example. PrefixSpan extracts partial
sequences with the number of occurrences shown in
Fig.1. �a3�4�a2�3�a4�2�a6�2� shows time-series data
�a3�a2�a4�a6� with frequency indicated by suffixes, i.e.,
the occurrence ofa3 alone is 4 and the occurrence of
�a3�a2�a4�a6� as time-series data is 2.

2.3. Behavior Inference Algorithm

With exact matching enabled by such time-sequence
data mining, we propose a behavior inference algorithm

Fig. 1. Time-series data generated by PrefixSpan.

Fig. 2. Overview of proposed inference engine.

that takes into account noise in both time-sequence data
in the database and in observation data.

Inference for predict a subject’s next behavior involves
finding the same time-sequence data as window data from
the behavior database, which consists of an enormous
amount of time-sequence data observed in the past. We
used PrefixSpan to generate partial time-sequence data
from the behavior database since because PrefixSpan min-
imizes computational cost and is easy to use.

We developed window-based matching to make our
proposed inference engine (Fig.2) robust against noise.
We used certainty to indicate the confidence of inferred
results.

We start by defining terms used in the algorithm. Each
behavior observed by sensors is defined asinput data wi.
Assume that the latest input data iswi and the number of
W input data is�wi�W�1� � � � �wi� observed recently.W
time-series data is defined aswindow data of width W .

Matching between the input data and behavior database
stet window size. If we start out to find the time-series
input data of window size 5 and cannot locate the exactly
same sequence, for example, we reduce the window width
to 4�3� or 2, so even if input data contains some noise, we
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Time Series Actions

Window Width:W = 5

a1 3 a 2 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2
a 3 a 2 a 2 a 2 a 2 a 2

2 3 4 5 6 7 8

1 2 3 4 5 6 8

1 2 3 4 5 7 8

1 2 3 4 5 8

1 2 3 4 6 7 8

1 2 3 4 6 8

1 2 3 4 7 8

1 2 3 4 8

1 2 3 4 6 7 8

1 2 3 5 6 8

1 2 3 5 7 8

1 2 3 5 8

1 2 3 5 7 8

Predicted Next Event: a6

Certainty: 100%( )
a 26

a 25

Fig. 3. Matching algorithm.

find the exact same data in the database. The maximum
window size used at the beginning of a search is defined as
Wmax and the minimum isWmin. To infer a subject’s next
action, we must know several cases of time-sequence data
as a hint, soWmin is used for terminating the search.

An inferred event is the action that occurs following the
matching of the time-sequence data with window sizeW
at the highest certainty.Certainty is calculated as follows:

certainty �
Oia

Opa
� �0� certainty � 1� . . (1)

whereOia is the occurrence of inferred action andOpa is
the occurrence of previous action to the inferred action
calculated by PrefixSpan (Fig.3).

The inference engine outputs one of the following: end
of sequence (EOS), inferred event with certainty, or null.
EOS is output when observed time-series data matches in
the database but the most recent observed event is EOS
in the database match, meaning that the inference engine
could not infer the next event. When the inference engine
finds matched time-series data and a subsequent event in
the database, it outputs the succeeding event as the in-
ferred event with certainty calculated by formula (1). Null
is output when the inference engine cannot find matching
data in the database even though it has reduced time-series
actions to window widthWmin.

The overall algorithm of our proposed inference engine
is as follows:

1) A window with sizeW � 5 is created and all contents
are initialized as Null.

2) Events observed at mostW � 5 are input to the win-
dow so the most recent event becomeswW .

3) The exact same time-series data as in the window in
the database is found.

Fig. 4. Reduction of window size.

4) If matched data matches only one, the inferred�W �
1�th event in the database is output with certainty
calculated by formula (1). If no�W �1�th event ex-
ists, EOS is output.

5) If the number of matched data is multiple, the high-
est certainty ones are selected, then the longest se-
quenced ones1. If multiple candidates still remain
after select on, arbitrary candidates are selected as
matched data. Stet inferred event or EOS is output
as in procedure 4.

6) If no data matches from procedure 3, the window
size is reduced toW � W � 1 as shown inFig.4.
Matched data is then found with these multiple win-
dow as in procedure 3. When the window size be-
comesW �Wmin, it null is output because no is found
matched data in the database. The above procedures
are summarized inTable 1.

2.4. Activity Support
While have a system suggest the next action a subject

may do, it is important that it do so unobtrusively and def-
erentially. With this in mind, we developed a mobile robot
that recommends the next action by voice and gesture.

To minimize the possibility of unsuitable recommenda-
tions, we give certainty a threshold based on formula (1),
having the robot make a suggestion only if the certainty
of an inferred event exceeds the threshold.

We conducted experiments with 10 subjects and col-
lected comments on whether recommendations (inferred
events) were suitable. Results confirmed that most cer-
tainty subjects felt was unsuitable was below 0�55. We
thus set the threshold to 0�55 and had the robot desist
from making recommendations whose certainty was be-
low them.

1. This is because the longer the time series data in the database, the more
detailed procedures become.
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Table 1. Matching algorithm.

No. Procedures
1 SetW � 5 and create window�w1�w2�w3�w4�w5� with all values as null.
2 Input observed (at most)W � 5 events to window to make most recent event becomewW .
3 Finds exactly same time series events as for window in database.

Matched data is singular: Go to 4.
Matched data is plural: Go to 5.
Matched data is zero: Go to 6.

4 Output inferred event (�W �1�th event in database) with certainty calculated by formula (1).
Output EOS if�W �1�th event not found.

5 Select highest certainty, then select longest sequences.
6 Reduce window size toW �W �1: Go to 3.

If window size becomesW �Wmin, it outputs null.

Fig. 5. Items with IC tags.

3. Implementation

3.1. IC Tags
Based on our assumption that barcoded merchandise in

supermarkets and department stores will eventually have
IC tags, and that most items in the home and office will
have IC tags, we assumed that we would trace their loca-
tion and movement using antennas.

We used IC tags (Feig Electronics Co. Ltd.) with labels
2cm�5�5cm. The 30cm�40cm antenna reads/writes IC
tag information within 15cm.

We attached IC tags to ordinary home and kitchen
items, e.g., cups, glasses, pots, instant coffee, tea bags,
cream, sugar, potatoes, carrots, spoons, forks, knives,
medicine chest, disinfectant, cotton and adhesive bandage
(Fig.5).

Tag information was acquired by PC via an RS-232C
serial link. The inference engine is implemented on the
PC and inferred events are transferred to the mobile robot
via a wireless LAN (Fig.6).

RS-232C

Smart-tag System

Linux WS
(Pentium4, 2GHz)

Smart-tag

Antenna

Controller

Interface

Wireless LAN

Mobile Robot

Voice

Gesture

LCD T ouch Panel

Text

Picture

Fig. 6. Cooking support robot configuration.

3.2. Inference of Next Action

To acquire learning instances for PrefixSpan, we asked
ten subjects to conduct five tasks – 1) making a cup of
coffee, 2) making a cup of tea, 3) treating a cut finger, 4)
taking cold medicine, and 5) making rice curry (Fig.7).

To predict behavior precisely, we used IC tag informa-
tion and information of tag location – a: cupboard, b:
cabinet, c: medicine chest – and human action – 0: re-
moved, 1: stored. Event Spoon-a0, for example, shows
that a spoon is removed from a cupboard.

In current implementation, we use only one IC tag an-
tenna, so we have subjects scan items. The system knows
that the tagged IC object is removed when the IC tag is
observed by the antenna for the first time, then that it was
stored when the same IC tag is observed a second time.
Storage places for items are predefined depending on the
item and hard-coded in a program. In the future, by in-
stalling IC tag antennas on each shelf and kitchen counter,
we can have the system know item locations in real time
so subjects need not scan items.
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Fig. 7. Example of learning data.

Fig. 8. Example of time-series data generated by PrefixSpan.

The time-sequence database generated by PrefixSpan
from the learning data (Fig.7) is shown inFig.8. Data
�Cup-a0/20, Pot-a1/10, TeaBag-a1/10, Spoon-a0/3�, for
example, shows that the event Cup-a0 alone was observed
20 times in learning data but that the�Cup-a0, Pot-a1,
TeaBag-a1, Spoon-a0� sequence – the cup is removed
from the cupboard, the pot is stored in the cupboard, the
tea bag is stored in the cupboard, and the spoon is re-
moved from the cupboard – was observed 3 times.

3.3. Cooking-Support Robot
The mobile robot Robovie (ATR) [7] served as cook-

ing support (Fig.9). The robot recommended anticipated
action by synthesized voice and gestures.

Overall, we confirmed that the following support was
realized: When a subject removed a cup and instant cof-
fee from the cupboard, the robot anticipates the next
action by saying “sugar is in the cupboard” and turn-
ing toward the cupboard and pointing to the shelf where
the sugar is. When a subject took cold medicine and
stored it in the medicine chest, the robot suggested that
“the medicine chest should be stored on the shelf” and
pointed to the shelf. These recommendations are auto-
matically generated from inferred events such as Sugar-a0
and MedicineBox-b1 etc.

Fig. 9. Cooking-support robot recommending a presumed
next action by voice and gesture.

4. Experimental Results

To evaluate the feasibility and quality of support, we
conducted experiments with 10 subjects other than those
used for collecting learning instances. We instructed the
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Table 2. Evaluation phrases.

Score Phrase
�1 “Thank you.”
0 (silent/ignore)
�1 “No thanks.”

Fig. 10. Evaluation of task adequacy.

Fig. 11. Evaluation of adequacy when two tasks were inter-
leaved.

new subjects to speak short phrases based on how they
felt, each time they heard suggestions from the robot.
These phrases, shown inTable 2, were graded�1 to�1.
We videotaped experiments and counted scores each time
the robot made suggestions.

To confirm the adequacy of suggestions in each task
(task 1 to 4 explained in Section 3.2), we asked subjects
to perform each task. Averaged scores a shown inFig.10
and all exceeded 0�8. Results thus confirmed that the sys-
tem inferred actions appropriately and suggestions by the
robot were accepted by subjects.

To evaluate robustness against noises in observed time-
series data, we instructed two subjects to perform differ-
ent tasks, e.g., having one to make a cup of coffee and the
other take cold medicine. Their actions (item use) will be
interleaved and actions of one subject become noise in the
other. Averaged scores are shown inFig.11.

Even though the two tasks were interleaved, averaged
scores were still high, about 0�7. Results confirmed that
the reduction of window size (explained in Section 2.3)
effectively made the system robust against noise in ob-
served action sequences.

5. Conclusions

We have proposed behavior recognition in which sub-
sequent action is anticipated by taking into account pre-
viously observed behavior. We developed a cooking-
support robot that recommends subsequent action by
voice and gestures. Experimental results confirmed the
feasibility of the proposed inference and the quality of
support.

Our proposed recognition system is as follows.

1) It is robust against noise in both the time-sequence
data in the database and in observation data. Such
noise is inevitable in systems that accept free activity
in intelligent space. Robustness was confirmed by
experimental results.

2) Certainty is calculated with inferred action, the ap-
plication to support subjects based on confidence.

3) Data mining enabled the system to adapt to many
applications by expanding data. If we import recipes
conducted by professional cooks, it will be attractive
to both new and experienced cooks.

We are planning to have the system suggest recipes by
taking account food available in the kitchen, and to extend
the system so that it detects more precise and detailed ac-
tivities using a variety of sensors such as vision and laser
etc.
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